您当前的位置:绪 论 >> 第一节 力学

     此后,力学的研究对象由单个的自由质点,转向受约束的质点和受约束的质点系。这方面的标志是达朗贝尔提出的达朗贝尔原理,和拉格朗日建立的分析力学。其后,欧拉又进一步把牛顿运动定律用于刚体和理想流体的运动方程,这看作是连续介质力学的开端。

     运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生出世,在这方面做出贡献的是纳维、柯西、泊松、斯托克斯等人。弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。

     从牛顿到汉密尔顿的理论体系组成了物理学中的经典力学。在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。这使得19世纪后半叶,在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。

     20世纪初,随着新的数学理论和方法的出现,力学研究又蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题等。

     这时的先导者是普朗特和卡门,他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。从20世纪60年代起,计算机的应用日益广泛,力学无论在应用上或理论上都有了新的进展。

     力学在中国的发展经历了一个特殊的过程。与古希腊几乎同时,中国古代对平衡和简单的运动形式就已具备相当水平的力学知识,所不同的是未建立起像阿基米德那样的理论系统。

     在文艺复兴前的约一千年时间内,整个欧洲的科学技术进展缓慢,而中国科学技术的综合性成果堪称卓著,其中有些在当时世界居于领先地位。这些成果反映出丰富的力学知识,但终未形成系统的力学理论。到明末清初,中国科学技术已显著落后于欧洲。

     力学与数学在发展中始终相互推动,相互促进。一种力学理论往往和相应的一个数学分支相伴产生,如运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学和数学分析理论,天体力学中运动稳定性和微分方程定性理论等,因此有人甚至认为力学应该也是一门应用数学。但是力学和其它物理学分支一样,还有需要实验基础的一面,而数学寻求的是比力学更带普遍性的数学关系,两者有各自不同的研究对象。



    上一页   第2页 下一页      共7页