一.概述
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。
人类利用风能的历史可以追溯到公元前。我国是世界上最早利用风能的国家之一。公元前数世纪我国人民就利用风力提水、灌溉、磨面、舂米,用风帆推动船舶前进。到了宋代更是我国应用风车的全盛时代,当时流行的垂直轴风车,一直沿用至今。我国历史上著名的科学著作《天工开物》中记载的“扬郡以风帆数扇,俟风转车,风息则止”,
《物理小识》中描述的“用风帆6幅、车水灌田,淮扬海填皆为之”是对当时水平轴风车应用于农业生产的忠实写照。
在国外,公元前2世纪,古波斯人就利用垂直轴风车碾米。10世纪伊斯兰人用风车提水,11世纪风车在中东已获得广泛的应用。13世纪风车传至欧洲,14世纪已成为欧洲不可缺少的原动机。在荷兰风车先用于莱茵河三角洲湖地和低湿地的汲水,以后又用于榨油和锯木。只是由于蒸汽机的出现,才使欧洲风车数目急剧下降。
数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。
即使在发达国家,风能作为一种高效清洁的新能源也日益受到重视。美国早在1974年就开始实行联邦风能计划。其内容主要是:评估国家的风能资源;研究风能开发中的社会和环境问题;改进风力机的性能,降低造价;主要研究为农业和其他用户用的小于lOOkW的风力机;为电力公司及工业用户设计的兆瓦级的风力发电机组。美国已于80年代成功地开发了100、200、2000、2500、6200、7200kW的6种风力机组。目前美国已成为世界上风力机装机容量最多的国家,超过2×104MW,每年还以10%的速度增长。现在世界上最大的新型风力发电机组已在夏威夷岛建成运行,其风力机叶片直径为97.5m,重144t,风轮迎风角的调整和机组的运行都由计算机控制,年发电量达1000万kW·h。根据美国能源部的统计至1990年美国风力发电已占总发电量的1%,发电成本也从美分/(kW·h)降至1美分/(kW·h)。
在瑞典、荷兰、英国、丹麦、德国、日本、西班牙,也根据各自国家的情况制定了相应的风力发电计划。如瑞典1990年风力机的装机容量已达350MW,年发电10亿kW·h。丹麦在1978年即建成了日德兰风力发电站,装机容量2000kW,三片风叶的扫掠直径为54m,混凝土塔高58m,预计到2005年电力需求量的10%将来源于风能。德国1980年就在易北河口建成了一座风力电站,装机容量为3000kW,到本世纪末风力发电也将占总发电量的8%。英国,英伦三岛濒临海洋,风能十分丰富,政府对风能开发也十分重视,到1990年风力发电已占英国总发电量的2%。在日本,1991年10月轻津海峡青森县的日本最大的风力发电站投入运行,5台风力发电机一字排开,在隔海吹来的凛冽寒风中旋转,可为700户家庭提供电力。
我国位于亚洲大陆东南、濒临太平洋西岸,季风强盛。季风是我国气候的基本特征,如冬季季风在华北长达6个月,东北长达7个月。东南季风则遍及我国的东半壁。根据国家气象局估计,全国风力资源的总储量为每年16亿kW,近期可开发的约为1.6亿kW,内蒙古、青海、黑龙江、甘肃等省风能储量居我国前列,年平均风速大于3m/s的天数在200天以上。
我国风力机的发展,在50年代末是各种木结构的布篷式风车,1959年仅江苏省就有木风车20多万台。到60年代中期主要是发展风力提水机。70年代中期以后风能开发利用列入“六五”国家重点项目,得到迅速发展。进入80年代中期以后,我国先后从丹麦、比利时、瑞典、美国、德国引进一批中、大型风力发电机组。在新疆、内蒙古的风口及山东、浙江、福建、广东的岛屿建立了8座示范性风力发电场。1992年装机容量已达8MW。新疆达坂城的风力发电场装机容量已达3300kW,是全国目前最大的风力发电场。至1990年底全国风力提水的灌溉面积已达2.58万亩。1997年新增风力发电10万kW。目前我国已研制出100多种不同型式、不同容量的风力发电机组,并初步形成了风力机产业。尽管如此,与发达国家相比,我国风能的开发利用还相当落后,不但发展速度缓慢而且技术落后,远没有形成规模。在进入21世纪时,我国应在风能的开发利用上加大投入力度,使高效清洁的风能能在我国能源的格局中占有应有的地位。
|
|
古老的水车 |
老式风车 |
|
二.风况
1.风的形成
对人类来说,风是最热悉的自然现象。要了解风的形成必须了解包围着地球的大气的运动。大气的流动也像水流一样是从压力高处往压力低处流。太阳能正是形成大气压差的原因。
由于地球自转轴与围绕太阳的公转轴之间存在66.5°的夹角,因此对地球上不同地点,太阳照射角度是不同的,而且对同一地点一年365天中这个角度也是变化的。地球上某处所接受的太阳辐射能正是与该地点太阳照射角的正弦成正比。地球南北极接受太阳辐射能少,所以温度低,气压高;而赤道接受热量多,温度高,气压低。另外地球又绕自转轴每24h旋转一周,温度、气压昼夜变化。这样由于地球表面各处的温度、气压变化,气流就会从压力高处向压力低处运动,而形成不同方向的风,并伴随不同的气象变化。图4—29表示了地球上风的运动方向。
地球上各处的地形地貌也会影响风的形成,如海边,由于海水热容量大,接受太阳辐射能后,表面升温慢,陆地热容量小,升温比较快。于是在白天,由于陆地空气温度高,空气上升而形成海面吹向陆地的海陆风。反之在夜晚,海水降温慢,海面空气温度高,空气上升而形成由陆地吹向海面的陆海风(见图4-30)
同样在山区,白天太阳使山上空气温度升高,随着热空气上升,山谷冷空气随之向上运动,形成“谷风”。相反到夜间,空气中的热量向高处散发,气体密度增加,空气沿山坡向下移动,又形成所谓“山风”(见图431)。
2.风的变化
有两个描述风的重要参数,这就是风向和风速。风向是指风吹来的方向,如果风是从北方吹来就称为北风。风速是表示风移动的速度,即单位时间内空气流动所经过的距离。显然风向和风速这两个参数都是在变化的。
(1)风随时间的变化
风随时间的变化,包括每日的变化和季节的变化。通常一天之中风的强弱在某种程度上可以看作是周期性的。如地面上夜间风弱,白天风强;高空中正相反是夜里风强,白天风弱。这个逆转的临界高度约为100—150m。图4-32是在日本川口国际广播电台的无线电铁塔上测得的不同高度处,一天内的风速变化。
由于季节的变化,太阳和地球的相对位置也发生变化,使地球上存在季节性的温差。因此风向和风的强度也会发生季节性变化。
我国大部分地区风的季节性变化情况是:春季最强,冬季次之,夏季最弱。当然也有部分地区例外,如沿海温州地区,夏季季风最强,春季季风最弱。
(2)风随高度的变化
从空气运动的角度,通常将不同高度的大气层分为三个区域(图4-33)。离地面2m以内的区域称为底层;2-l00m的区域称为下部摩擦层,二者总称为地面境界层;从100一1000m的区段称为上部摩擦层,以上三区域总称为摩擦层。摩擦层之上是自由大气。
地面境界层内空气流动受涡流、黏性和地面植物及建筑物等的影响,风向基本不变,但越往高处风速越大。各种不同地面情况下,如城市、乡村和海边平地,其风速随高度的变化如图4-34所示。
(3)风的随机性变化
如果用自动记录仪来记录风速,就会发现风速是不断变化的,一般所说的风速是指变动部位的平均风速。通常自然风是一种平均风速与瞬间激烈变动的紊流相重合的风。紊乱气流所产生的瞬时高峰风速也叫阵风风速。图4—35表示了阵风和平均风速的关系。
3.风力等级
世界气象组织将风力分为13个等级,如表4-9所示,在设有风速计时可以根据它来粗略估计风速。
三.风能利用
|
插图
澳大利亚风车 |
|
可以用下面简单公式来估算风能。
风速为υ的流动空气的动能为E=(1/2)mυ2,其中m为流体空气的质量。如果用ρ表示流动空气的密度,则每平方米面积上流过的空气质量为pu;因此每平方米面积上风速为u的风的能量密度P为:
P= W/m2
显然风速u愈高,风力机可能获得的风能
P也愈大,因此风力机应安装在风速大的地方,而且风力机的迎风面积越大,所获得的风能也越多。值得注意的是,由于流经风力机后,风速不可能为零,因此风所拥有的能量并不能完全被利用,也就是说只有风能的一部分被转换成风力机浆叶的机械能,然后这一机械能再被利用来提水,碾米或转换成电能。
由于空气的密度仅仅是水密度的1/816,因此与水能相比,在相同的流速下,风能的能流密度是很低的。风能和其他能源的能流密度之比见表4—10。由于风能能流密度低就给其利用带来一定的困难。
风能目前主要用于以下几方面:
(1)风力提水
风力提水自古至今一直得到较普遍的应用。至20世纪下半时,为解决农村、牧场的生活、灌溉和牲畜用水以及为了节约能源,风力提水机有了很大的发展。现代风力提水机根据用途可以分为两类。一类是高扬程小流量的风力提水机,它与活塞泵相配提取深井地下水,主要用于草原、牧区,为人畜提供饮水。另一类是低扬程大流量的风力提水机,它与螺旋泵相配,提取河水、湖水或海水,主要用于农田灌溉、水产养殖或制盐。风力提水机在我国用途广阔,如“黄淮河平原的盐碱改造工程”就可大规模采用风力提水机来改良土壤。
(2)风力发电
利用风力发电已越来越成为风能利用的主要形式,受到世界各国的高度重视,而且发展速度最快。风力发电通常有三种运行方式。一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,它用蓄电池蓄能,以保证无风时的用电。二是风力发电与其他发电方式(如柴油机发电)相结合,向一个单位或一个村庄或一个海岛供电。三是风力发电并入常规电网运行,向大电网提供电力;常常是一处风场安装几十台甚至几百台风力发电机,这是风力发电的主要发展方向。
我国新疆的风力发电
(3)风帆助航
在机动船舶发展的今天,为节约燃油和提高航速,古老的风帆助航也得到了发展。航运大国日本已在万吨级货船上采用电脑控制的风帆助航,节油串达15%。
(4)风力致热
随着人民生活水平的提高,家庭用能中热能的需要越来越大,特别是在高纬度的欧洲、北美取暖,煮水是耗能大户。为解决家庭及低品位工业热能的需要,风力致热有了较大的发展。“风力致热”是将风能转换成热能。目前有三种转换方法。一是风力机发电,再将电能通过电阻丝发热,变成热能。虽然电能转换成热能的效率是100%,但风能转换成电能的效率却很低,因此从能量利用的角度看,这种方法是不可取的。二是由风力机将风能转换成空气压缩能,再转换成热能,即由风力机带动一离心压缩机,对空气进行绝热压缩而放出热能。三是将风力机直接转换成热能。显然第三种方法致热效率最高。
风力机直接转换热能也有多种方法。最简单的是搅拌液体致热,即风力机带动搅拌器转动,从而使液体(水或油)变热(见图4-38)。
液体挤压致热”是用风力机带动液压泵,使液体加压后再从狭小的阻尼小孔中高速喷出而使工作液体加热。此外还有固体摩擦致热和涡电流致热等方法。
风电场
草原上的风电机
视频:能源科学资料集成——风力发电
|