您当前的位置:第三章 >> 第二节 湖水运动
第二节 湖水运动
一、引起湖水运动的力
引起湖水运动的力主要有:风力、水力梯度及造成水平或垂直密度梯度引起的力。湖水内部压力梯度及由水温、含沙量或溶解质浓度变化造成的密度梯度都能引起湖水运动。
湖中波浪多是由湖面风引起的。风吹到平静的湖面上,首先使广阔的湖面产生波动和波纹,形成比较有规则、范围较小且向同一方向扩展的表面张力波。波高的增加与风速、作用持续时间及吹程呈函数关系。然而即使在最大的湖泊中,也不会出现海洋中的波涛现象。由于持久的风力和气压梯度造成湖面倾斜,当外力作用停止时将引起湖水流动,使湖而复原。这一过程称静振。基本的静振为单节的,但如发生谐波,则亦可能是多节的。如风沿狭长的湖泊长轴劲吹,则多出现纵向静振,而横穿狭窄湖面则多出现横向静振。湖泊内部静振是由热力分层现象引起的。
湖流是各种力相互作用的结果,但在许多情况下少数特定的力起著支配作用。当没有水平压力梯度,没有摩擦时,水平流受地转偏向力影响,北半球将偏向右。在压力梯度起支配作用时,则这种力与地转偏向力相结合形成所谓地转流。这种情况只出现在很大的湖泊中。由于风力作用或气压梯度使水面倾斜而产生梯度流。
二、湖中波浪的形成
湖水质点在外力作用下围绕其平衡位置作周期性振动并沿一定方向传播的现象称为湖中波浪。根据波浪的成因可分为风波和船行波等,常见的是风波。
风波的产生与发展主要取决于风速、风向、吹程和风的持续时间。湖水深度与湖泊形态也是重要因素。在起风后不久,湖面很快产生周期小于 1秒,波长只有几厘米的涟波。此时,使水质点恢复到平衡位置的力是表面张力,故又称表面张力波或毛细波。随着风力的增强和作用时间的增长,涟波逐渐增大,波高迅速达到最大值,此时恢复力主要为重力,故又称风成重力波。当风沿一个方向继续劲吹,风波将得以足够的发展,这时在波浪的迎风面上产生二次波;二次波又将按上述过程发展,即由涟波演变成重力波。此时波浪既不对称于水平轴,也不对称于垂直轴,迎风波面比背风波面平缓,在背风二次波面上又可形成三次波。风波仅限于湖泊的表层,故又称短波或表面波。
当风足够强时,湖面风波的波峰往往被风掀倒,同时由于空气的渗入,形成白色的浪花,称为白浪。当风力减弱时,风波就停止发展,仅由水质点的惯性作用,波浪仍继续存在,并向前传播,称为余波或自由波。在余波运动过程中,波长小的波由于紊动消耗而消失,波长较大的波继续向前传播,并具有规则对称二向波特性,它的波长比波高衰减得慢。全波的波长比风波的大,所以又称余波为长波或浅水波。当风浪或余波传播到岸边时,由于湖底的摩擦和水深变小,使波能集中,波峰逐渐赶上波谷,产生波浪的倾覆和破碎,冲向岸边,称为拍岸浪或近滨浪。波浪破碎时动能很大,往往对湖岸产生剧烈的破坏作用。
湖泊、水库的水面宽度有限,水深较小,风浪在形状和大小上都不同于海浪。①湖波的形状与正规的摆线形状有很大不同。湖波往往是不规则的三度波。一定方向的波浪有时会被另一方向风引起的波浪覆盖。此外,经常能观察到波浪的干扰,产生三角浪。②湖泊水体容积小,湖泊中的风浪能随着风的出现而立即产生,也能随着风的停止而迅速消失。③湖泊中一般没有涌浪。个别情况下大湖水面在无风时会出现余波。伊塞克湖在完全无风时,可观测到高1米长10米的余波。④湖泊、水库中的波浪高度比海洋中的小。小湖中波高一般不超过 0.5米。大湖中最大波高往往为3~4米,有时可达5~6米,如北美洲的苏必利尔湖、密歇根湖和休伦湖等。水库中波高2.5~3.5米,海浪高达20米,甚至可达30米以上。湖波比海洋波浪陡,劲风时海洋上波浪平均陡度(波高与波长之比值)为1/10~1/20,长波时为 1/30或更小,而湖泊中狂风巨浪的陡度达到1/5。水库中,随着风力增强,波高的增长比波长的增大要快,当波高达到约 1米时,波长的增加急剧减小。波浪的这种增长导致波浪陡度的增大和稳定性的减小,当陡度约为1/7~1/8时,波峰出现白色的浪花,形成白浪。湖中风浪的传播深度只有几米,最大湖中则为20米或稍多些。波浪向深处实际传播的限度可根据湖边沙波来判断。日内瓦湖波浪传播深度为9米,贝加尔湖为8~10米。